SFP28-25G-SR

25GBase SFP28 850nm 100m Reach

info@nexgen.eu

www.nexgen.eu 😚

Features

- Supports 25.78Gb/s data rate
- Up to 100m transmission on MMF
- Duplex LC Connextor
- Hot-pluggable SFP28 footprint
- Power dissipation < 1.0W
- Built-in digital diagnostic functions
- Single +3.3V power supply
- Commercial operating case temperature: 0°C to 70°C
- Industrial operating case temperature : -40°C to 85°C
- **RoHS Compliant**

Applications

- 25G Base-SR
- Data Center

Part number	Product description
SFP28-25G-SR	25GBase MMF SFP28 850nm 100m 0°C to 70°C LC Duplex DDM
SFP28-25G-SR-I	25GBase MMF SFP28 850nm 100m -40°C to 85°C LC Duplex DDM

PIN Description

PIN	Symbol	Name - Description	Notes
1	VEET	Transmitter Ground (Common with Receiver Ground)	
2	TFAULT	Transmitter Fault. Not supported.	1
3	TDIS	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	1
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	1
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	1
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	3
9	VEER	Receiver Ground (Common with Transmitter Ground)	
10	VEER	Receiver Ground (Common with Transmitter Ground)	
11	VEER	Receiver Ground (Common with Transmitter Ground)	
12	RD-	Receiver Inverted DATA out. AC Coupled	4
13	RD+	Receiver Non-inverted DATA out. AC Coupled	4
14	VEER	Receiver Ground (Common with Transmitter Ground)	
15	VCCR	Receiver Power Supply	
16	VCCT	Transmitter Power Supply	
17	VEET	Transmitter Ground (Common with Receiver Ground)	
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	5
19	TD-	Transmitter Inverted DATA in. AC Coupled.	5
20	VEET	Transmitter Ground (Common with Receiver Ground)	

Notes:

- Open collector/drain output, which should be pulled up with a 4.7kΩ to 10kΩ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to 3.6V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.</p>
- 2. Laser output disabled on Tx_Disable >2.0V or open, enabled on Tx_Disable <0.8V.
- 3. LOS is open collector output. Should be pulled up with $4.7 k\Omega$ to $10 k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4. RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 5. TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

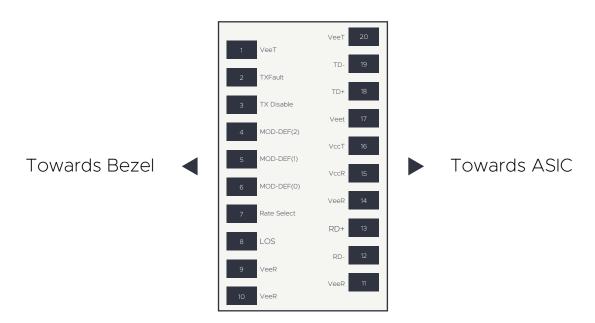


Figure 1. Diagram of host board connector block pin numbers and names

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5	-	3.6	V	
Storage Temperature	Ts	-40	-	+85	°C	
Relative Humidity	RH	5	-	95	%	1

Notes:

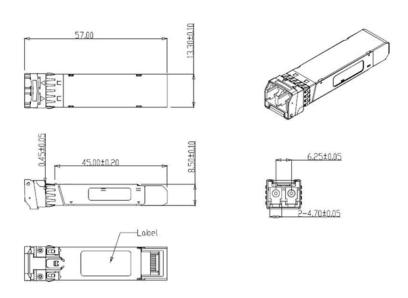
Non-condensing.

Recommend Operation Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Power Supply Current	lcc	-	-	300	mA	
Power Dissipation	Ро	-	-	1.0	W	
Case Operating Temperature (com.)	Тор	0	-	+70	°C	
Case Operating Temperature (ind.)	Тор	-40	-	+85	°C	

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Transmitter						
Steady State Current	Icc	-	-	300	mA	
Input Differential Impedance	Zin	90	100	110	Ω	
Differential Input Voltage	Vppin	200	-	900	mV	
Receiver						
Output Differential Impedance	Zout	90	100	110	Ω	
Differential Output Voltage	Vppout	100	-	500	mV	


Optical Characteristics

Symbol	Min	Тур	Max	Unit	Notes
λС	840	850	860	nm	
Ро	-8.4	-	2.4	dBm	
ER	2.0	-	-	dB	
Δλ	-	-	0.65	nm	
-	-	25.78	-	Gb/s	
λС	840	-	860	nm	
Sen	-	-	-10.0	dBm	
Pmin	-	-	-5.2	dBm	
Pmax	3.0	-	-	dBm	
LOSD	-	-	-12	dBm	
LOSA	-30	-	-	dBm	
LOSH	0.5	-	-	dB	
	λC Po ER Δλ - λC Sen Pmin Pmax LOSD LOSA	λC 840 Po -8.4 ER 2.0 Δλ λC 840 Sen - Pmin - Pmax 3.0 LOSD - LOSA -30	λC 840 850 Po -8.4 - ER 2.0 - Δλ - 25.78 λC 840 - Sen Pmin Pmax 3.0 - LOSD LOSA -30 -	λC 840 850 860 Po -8.4 - 2.4 ER 2.0 Δλ 0.65 - 25.78 - λC 840 - 860 Sen10.0 Pmin5.2 Pmax 3.0 LOSD 12 LOSA -30	λC 840 850 860 nm Po -8.4 - 2.4 dBm ER 2.0 - - dB Δλ - - 0.65 nm - - 25.78 - Gb/s λC 840 - 860 nm Sen - - -10.0 dBm Pmin - - -5.2 dBm Pmax 3.0 - - dBm LOSD - - -12 dBm LOSA -30 - - dBm

Notes

Sensitivity is measured at 25.75 Gbps with 5x10E-5 BER

Mechanical Dimensions

Revision history

Revision	Date	Author	Description
V1.1	05-03-2020	JGN	Initial Document

Note: Nexgen A/S reserves the right to change this document without notice.